71 research outputs found

    Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140^{140}Pr and 142^{142}Pm Ions

    Get PDF
    We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140^{140}Pr59+^{59+} and 142^{142}Pm60+^{60+} ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.Comment: 12 pages, 5 figure

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Planet formation in Binaries

    Full text link
    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.Comment: Review chapter to appear in "Planetary Exploration and Science: Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip, Springer (v2, numerous typos corrected

    Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy

    Get PDF
    Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple, tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be driven through one or more of the constituent energy-level avoided crossings. The resulting Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We review here three experimental works based on LZS transitions: Mach-Zehnder-type interferometry between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and atomic qubit modalities. We anticipate they will find application to qubit state-preparation and control methods for quantum information science and technology.Comment: 13 pages, 5 figure

    Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140^{140}Pr and 142^{142}Pm Ions

    Get PDF
    We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140^{140}Pr59+^{59+} and 142^{142}Pm60+^{60+} ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.Comment: 12 pages, 5 figure

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): Mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance

    Expression of Msx1 and Dlx1 during Dumbo rat head development: Correlation with morphological features

    Get PDF
    The Dumbo rat possesses some characteristics that evoke several human syndromes, such as Treacher-Collins: shortness of the maxillary, zygomatic and mandibular bones, and low position of the ears. Knowing that many homeobox genes are candidates in craniofacial development, we investigated the involvement of the Msx1 and Dlx1 genes in the Dumbo phenotype with the aim of understanding their possible role in abnormal craniofacial morphogenesis and examining the possibility of using Dumbo rat as an experimental model for understanding abnormal craniofacial development. We studied the expression of these genes during craniofacial morphogenesis by RT-PCR method. We used Dumbo embryos at E12 and E14 and included the Wistar strain as a control. Semi-quantitative PCR analysis demonstrated that Msx1 and Dlx1 are expressed differently between Dumbo and Wistar rats, indicating that their low expression may underly the Dumbo phenotype

    Of the importance of a leaf: the ethnobotany of sarma in Turkey and the Balkans

    Get PDF
    BACKGROUND: Sarma - cooked leaves rolled around a filling made from rice and/or minced meat, possibly vegetables and seasoning plants - represents one of the most widespread feasting dishes of the Middle Eastern and South-Eastern European cuisines. Although cabbage and grape vine sarma is well-known worldwide, the use of alternative plant leaves remains largely unexplored. The aim of this research was to document all of the botanical taxa whose leaves are used for preparing sarma in the folk cuisines of Turkey and the Balkans. Methods: Field studies were conducted during broader ethnobotanical surveys, as well as during ad-hoc investigations between the years 2011 and 2014 that included diverse rural communities in Croatia, Bosnia and Herzegovina, Serbia, Kosovo, Albania, Macedonia, Bulgaria, Romania, and Turkey. Primary ethnobotanical and folkloric literatures in each country were also considered. Results: Eighty-seven botanical taxa, mainly wild, belonging to 50 genera and 27 families, were found to represent the bio-cultural heritage of sarma in Turkey and the Balkans. The greatest plant biodiversity in sarma was found in Turkey and, to less extent, in Bulgaria and Romania. The most commonly used leaves for preparing sarma were those of cabbage (both fresh and lacto-fermented), grape vine, beet, dock, sorrel, horseradish, lime tree, bean, and spinach. In a few cases, the leaves of endemic species (Centaurea haradjianii, Rumex gracilescens, and R. olympicus in Turkey) were recorded. Other uncommon sarma preparations were based on lightly toxic taxa, such as potato leaves in NE Albania, leaves of Arum, Convolvulus, and Smilax species in Turkey, of Phytolacca americana in Macedonia, and of Tussilago farfara in diverse countries. Moreover, the use of leaves of the introduced species Reynoutria japonica in Romania, Colocasia esculenta in Turkey, and Phytolacca americana in Macedonia shows the dynamic nature of folk cuisines. Conclusion: The rich ethnobotanical diversity of sarma confirms the urgent need to record folk culinary plant knowledge. The results presented here can be implemented into initiatives aimed at re-evaluating folk cuisines and niche food markets based on local neglected ingredients, and possibly also to foster trajectories of the avant-garde cuisines inspired by ethnobotanical knowledge
    corecore